skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hamilton, Sean"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding the mechanisms by which single-stranded RNA viruses regulate capsid assembly around their RNA genomes has become increasingly important for the development of both antiviral treatments and drug delivery systems. In this study, we investigate the effects of RNA-induced allostery in a single-stranded RNA virus—Levivirus bacteriophage MS2 assembly—using the computational methods of the Dynamic Flexibility Index and the Dynamic Coupling Index. We demonstrate that not only does asymmetric binding of RNA to a symmetric MS2 coat protein dimer increase the flexibility of the distant FG-loop, inducing a conformational change to an asymmetric dimer, but also RNA binding reorganizes long-distance communications, making all the other positions extremely sensitive to the fluctuation of the ordered FG-loop. Additionally, we find that a point mutation in the FG-loop, W82R, leads to the loss of this asymmetry in communications, likely being a leading cause for assembly-deficient dimers. Lastly, this dominant communication that enhances its dynamic coupling with all the distal positions is not only a property of the dimer but is also exhibited by all the observed capsid intermediates. This strong dynamic coupling allows for unidirectional signal transduction that drives the formation of the experimentally observed capsid intermediates and fully assembled capsid. 
    more » « less
  2. Abstract Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counterintuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfvén waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold,α= 2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: preflare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine thatα= 1.63 ± 0.03. This is below the critical threshold, suggesting that Alfvén waves are an important driver of coronal heating. 
    more » « less